
Flits: Pervasive Computing for Processor and Memory Constrained
Systems

William Majurski, Alden Dima, Mary Laamanen
National Institute of Standards and Technology, Gaithersburg MD, USA

{william.majurski,alden.dima,mary.laamanen}@nist.gov

Abstract

Many pervasive computing software
technologies are targeted for 32-bit desktop
platforms. However, there are innumerable 8,
16, and 32-bit microcontroller and
microprocessor-based embedded systems that
do not support the resource requirements of
these technologies. We describe ongoing
research that explores the feasibility of creating
a portable runtime-environment capable of
executing across a wide-variety of 8, 16, and
32-bit processors and that offers mobile code
and high-level language support. Our solution
adapts a version of the language Forth called
FCode and its environment to fit these needs.
We introduce the concept of a “flit”, a software
construct similar to an applet but tailored to the
needs of lower resource solutions to pervasive
computing. We also describe work currently in
progress.

1. Introduction

Pervasive computing is the result of the
convergence of three areas of traditional
computing: personal computing, embedded
systems and computer networking. It can be
distinguished from computing in general by its
emphasis on ubiquity, interconnectedness and
dynamism. Pervasive computing is intended to
be ubiquitous; the goal is to create low-cost,
embedded, distributed and non-intrusive
computing technology. Networking via both
traditional wired and newer wireless

technologies plays a central role. Its dynamic
nature is a result of mobile and adaptive
applications that are able to automatically
discover and use remote services. Since the
notion of information appliances (small,
specially-designed computing devices) plays a
central role in pervasive computing, the rapid
rise of personal digital appliances (PDAs) is but
one example of the emergence of this new
computing paradigm.

The overall goal of our pervasive computing
project, which we call Aroma [1], is to explore
key technical, standardization and measurement
issues in pervasive computing and to work with
the community to begin resolving these issues.
A key tenet is our belief that within five years,
low-cost systems on a chip (SOC) will be
available that include a pico-cellular wireless
transceiver and a sufficiently rich run-time
environment to be capable of running
sophisticated virtual machines. This belief has
led us to focus our research in the following
areas:
• Investigating the connection of portable

wireless devices to traditional networks;
• Researching service discovery, self-

configuration and dynamic resource sharing;
• Exploring the use of mobile code and data in

pervasive computing; and
• Developing a software infrastructure to

create and manage pervasive services and
applications.

The focus of this paper is to introduce a
software platform for pervasive computing
which has small resource requirements, is based
on mature standards, and can be leveraged to

mailto:william.majurski@nist.gov
mailto:alden.dima@nist.gov
mailto:mary.laamanen@nist.gov

bring devices based on small embedded
processors into the mainstream of pervasive
computing.

While developing an adapter capable of
emulating future SOCs and of providing a
platform to examine pervasive computing
challenges [1], we began to notice that a curious
dichotomy exists in pervasive computing. Many
observers point to the increasing use of
embedded microprocessors in commercial
products as evidence of the emergence of
pervasive computing. However, many of these
embedded processors are lower-end 8- and 16-
bit microprocessors and microcontrollers. At the
same time, key pervasive computing
technologies such as Sun Microsystem’s Java™
[2] and Jini™ [3][4][5] appear to implicitly
require high-end 32-bit platforms similar to
modern personal computers.

Even when low-cost 32-bit SOCs become
widely available, there are a host of applications
for which they will be too expensive. The
“Internet toaster” is a commonly used metaphor
in the pervasive computing community,
although the same argument applies for other
consumer products. Most toasters are in the $10-
$50 price range. The consumer products
industry is extremely competitive – expensive
32-bit processors will not be used if they do not
sufficiently enhance the revenue generated from
a product. The manufacturer will be content to
use lower cost 8- or 16- bit processors and to
develop non-portable, embedded applications in
assembly language. This in turn makes it
difficult to realize some of the key software
aspects of pervasive computing such as mobile
code and data.

These issues are not new to pervasive
computing. Java was originally developed to
implement embedded software in consumer
electronics [6]. Oak, as it was first called, ran on
a stripped-down SPARC processor that was
intended for embedded systems. However, the
32-bit SPARC processor proved too expensive
for its intended audience. Java ultimately

became successful in the desktop personal and
server-based distributed computers.

Current thinking about low-end processors in
pervasive computing centers on either using
stripped-down runtime environments or using
high-end processors as a bridge to more
sophisticated technologies. If pervasive
computing is to become truly pervasive, then
low-end processors must be able to fully
participate in pervasive applications. Stripped-
down runtime environments will become a
maintenance issue when they require updates to
track development of the “standard” runtime.
Systems will become heterogeneous as the older
standard runtimes are kept in service to support
an installed based of embedded devices while
newer versions are deployed. Introducing proxy
processors creates a two-tier architecture which
increases the cost, the complexity and the
potential failure modes. It should be avoided, if
possible. A homogenous pervasive computing
architecture would also simplify the creation of
tools for measuring, testing and debugging
pervasive applications.

There are many efforts in pervasive
computing, but there is only enough space to
mention a few. Service discovery technologies
allow networked clients to dynamically discover
services on a network. Sun Microsystem’s
Java™/Jini™ technologies [3][4][5] and the
Service Location Protocol [7], a product of the
SRVLOC Working Group of the IETF [8], both
define this capability. Many pervasive
computing technologies are intrinsically
targeted for 32-bit architectures. A subset of the
Java platform has implemented for the 16-bit
processors found on the higher-end smart cards
[2].

2. Background

We began thinking about how mobile code
could be implemented in resource-constrained
environments. The underlying technology
should, in principle, be able to run efficiently on
an 8-bit microcontroller as well as the latest 32-

bit embedded microprocessor. It should be
network-ready, standards-based, compatible
with existing pervasive technologies and able to
support modern language facilities without
“reinventing the wheel”. After surveying
existing language and runtime technologies,
we’ve concluded that only Forth-based solutions
(such as Open Firmware [9]) meet the
requirements.

2.1. Forth

Originally created by Charles Moore to
control telescope movements, Forth [10] enjoys
great success in the embedded/hardware control
community [11]. One testimony to its success is
the list of current NASA space projects that
employ Forth [12]. Forth is both an extensible
language and an interactive program
development methodology [13]. While it is well
suited for small microcontrollers and
microcomputers used in embedded systems,
Forth has been implemented on nearly every
available processor. It has been used in a wide
variety of applications, including spreadsheets,
expert systems, multi-user databases, and
distributed real-time control systems.

Forth is a directly executable language for an
abstract stack-based machine. The Forth abstract
machine has a program counter, memory,
arithmetic logic unit, a data evaluation stack,
and a subroutine return address stack. Data
evaluation in Forth is accomplished on the Data
Stack using Reverse Polish Notation (RPN),
also called postfix notation. For example, the
following sequence typed from the keyboard:

3 4 + 5 * . 35 ok

interactively pushes the value 3 on the stack,
pushes the value 4 on top of the 3, destructively
adds 3 and 4 to get 7, then multiplies by 5. The
. operation displays the single resultant top
value on the stack, 35 (computer output is
underlined). ok is the Forth command prompt.
Operations such as SWAP and DUP (duplicate)

reorder and replicate the top few Data Stack
elements.

Objections to Forth’s peculiar syntax can be
addressed by using compilers and translators for
high-level languages that produce a Forth-
related byte-code (FCode) as output. This would
give the Forth interpreter a similar role to the
Java Virtual Machine, which is also a stack-
based machine.

Forth is appropriate for pervasive computing
for many reasons. It is standardized and
available from many vendors and for many
environments. Forth is an exceptionally portable
computer language which can run on hardware
ranging from small 8-bit microcontrollers to
modern 64-bit processors. Its small footprint
makes it appropriate for desktop applications as
well as embedded devices. It has a significant
following in embedded systems including
mission-critical applications such as NASA
flight systems. Forth offers a good trade-off
between size and speed. Forth is typically
implemented as a threaded, interpreted
language, but true compilers also exist. Forth’s
threaded interpretative nature allows programs
to be up to 30% smaller than equivalent
assembler programs [14]. This thrifty use of
available resources is very useful in resource-
constrained pervasive computing applications.
Network support is also available for Forth,
allowing it to serve as the basis for distributed
applications.

2.2. Open Firmware

Open Firmware is an IEEE standard
(recognized by ANSI) for the definition of
firmware [9]. Firmware is read-only-memory
(ROM)-based software that controls a computer
between the time is turned on and the time the
primary operating system takes control of the
machine. Open Firmware offers the following
features:
• A byte-coded machine-independent Forth-

based language called FCode that allows the
same device driver to execute on a wide

variety of CPUs. It is based on the ANSI
Standard Forth [10].

• Plug-in device drivers written in FCode that
are usually located in device ROM. They are
loaded at boot-time into the Open Firmware
system.

• A modular design that can be tailored to suit
a specific system’s needs.

• A programmable user interface that allows
for the creation, modification, testing,
debugging and execution of user programs
in ANSI Forth, that shares a common
execution environment with FCode.

In essence, Open Firmware is a small platform-
neutral operating system that can load and
execute programs from a variety of devices such
as disks, tapes, and network interfaces.

2.3. FCode

The Open Firmware standard goes beyond
Forth to define plug-in drivers that are written in
a byte-coded, machine-independent, interpreted
language called FCode, which is based on Forth
semantics. Since FCode is machine-
independent, the same device and driver can be
used on machines with different CPU
instruction sets. Each Open Firmware system
ROM contains an FCode interpreter.

In interpreted Forth, a “word” (equivalent to a
function in other languages) is implemented as a
list of addresses for other more basic words.
Each element in the list is called an execution
token and is sometimes implemented as the
address of a small structure defining the word to
be invoked. The Forth interpreter traverses the
list and invokes each word.

The first fundamental change offered by
FCode is in the interpretation of these execution
tokens. In an FCode system, the execution
token is not an address but instead a single byte
value (0-255 decimal) which is an index into a
256 element table. The Open Firmware
standard defines the interpretation semantics
associated with each element of this table. This
follows the basic definition for “byte code”.

Other differences between FCode and Forth
arise in the definition of branching, looping and
the encoding of literals. FCode, like Forth, is an
extensible language. In the byte-code
environment, special codes are reserved as a
prefix to longer 16-bit codes. These extended
codes allow for developers to define their own
words, temporarily assign them to byte codes,
and act as extensions to the FCode environment
while maintaining binary portability. The result
is essentially a binary portability standard for
Forth.

3. Flits

Our goal is to apply FCode to pervasive
computing, to explore the possibility of a
software environment powerful enough for the
desktop but scalable enough to fit into the
embedded world. Forth meets these
requirements well. It defines a standard word as
16 bits or larger and is frequently implemented
on 8-bit processors which can double up
registers to handle 16-bit data and addresses.

We’ve introduced the concept of a "flit"
(“Forth applet”) that will serve as a unit of
pervasive and mobile code used to integrate
desktop and embedded computing. This is not a
new technology but an extension of existing,
mature technologies: Forth and FCode.

Flits will define small semantic units that
require small implementations. They will be
stored locally or transferred across the network
as needed. Flit transport is modeled after well-
known applet mechanisms. When downloaded
from a remote location, they can be cached
locally. An integrated version control system
will help maintain consistency despite multiple
available versions. Access to persistent local
storage will be optional.

Flits will use FCode as a portable binary
format that can be easily transported across a
bus (as in Open Firmware) or a network. FCode
applications are portable, processor-architecture
neutral, and have low resource requirements.

Flits will execute on 8-, 16-, 32- or 64-bit
processors and controllers.

Flits need not originate from Forth source
code. They could be generated by language
compilers or translators to accommodate
programmers skilled with other languages. One
potential source environment for flits is a subset
of the Java language inspired by the Java
Card™ effort [2].

Portable device drivers for embedded devices
could be implemented as flits loaded in ROM.
The size and complexity of the device would
dictate the network protocols used. For
example, X10 [15], a proprietary protocol for
consumer products that transmits signals over
existing 120 volt power lines, could be
implemented as a flit.

We do not intend to integrate a graphical user
interface. This would result in very large
support libraries and applications. Flits are
protocol machines by nature. We leverage this
strength by stipulating that flits will generate
XML streams when a graphical presentation is
necessary. We will rely on graphical browsers,
such as Netscape Communicator or Microsoft
Internet Explorer, to use the XML output to
create a graphical interface.

Flits are intended for a wide range of
environments. Very lightweight environments
appropriate for embedded systems lie at the
low-end. The high-end consists of Internet-
ready devices that must consider issues such as
security and scheduling. We intend to focus first
on the lightweight low-end devices.

Our near-term goals include the construction
of a lightweight flit environment and associated
tools. Specifically, we are focusing on:
• Building an FCode compiler and interpreter;
• Defining the flit architecture;
• Implementing a flit runtime support

environment; and
• Integrating dynamic service discovery.
The next section describes the laboratory
prototype in greater detail. We realize that
concurrency, non-preemptive scheduling, and

security are important. We will address these
issues in a later phase of the project.

In an expanded environment, flit-related
security issues can be addressed relying on
certificates from trusted sources and enhanced,
as needed by capability-based security
mechanisms . The flit runtime environment will
allow for the creation of “sandboxes” that
prevent access to unauthorized disk and network
access similar to those found in Java [16]. When
necessary, certain Forth words can be
implemented to prevent random access to
unauthorized memory locations in a fashion
similar to that used by current operating
systems. Other mechanisms can be introduced
to prevent a flit from redefining core Forth
words. When running in user mode under a
modern operating systems, an implementation
can mitigate the effects of denial of service
attacks by using user-level threads – as far as
the underlying operating system is concerned,
the Forth environment will appear as a single
process executing in a single thread. At worst, a
malicious flit will crash only the underlying
Forth process.

4. Experimental Prototype

We are currently constructing a prototype
environment to further develop our ideas. Our
laboratory implementation consists of a core
platform centered on a Forth interpreter. It is
being extended with integrated network support,
an FCode implementation, and the ability to
boot and run in a stand-alone mode as well as
under an operating system. We also plan to
explore support for higher-level languages and
begin research for pervasive computing
software metrology and diagnostics.

4.1. Forth System

We have chosen a Forth interpreter, the Forth
Inspired Command Language (FICL) [17], for
experimentation. Like Tcl, FICL can be easily
extended. It can be embedded into other

systems as a command language. A cell in Forth
is the size of an item on the data stack. The
ANSI Forth standard specifies 16 bits or larger,
FICL uses a 32-bit cell size. We will ensure that
our efforts are compatible with a variety of
Forth implementations including Forth
implementations that use a 16-bit cell.

4.2. Integrated Network Support

Interconnectivity is one of the key features of
pervasive computing systems that distinguish it
from at the lower-end from traditional
embedded systems. We’ve implemented basic
network functionality by creating new Forth
words that wrap calls to underlying operating
system networking APIs. Many operating
systems, including those commonly used for
personal computers, have the identical C-level
networking APIs. This means that a wide range
of platforms can use our extension with just a
simple recompilation of the source code. In the
past, network stacks have been implemented
entirely in Forth. As our research progresses, we
may revisit this issue.

4.3. FCode Implementation

Our FCode implementation is being written
entirely in ANSI Standard Forth. The
implementation uses a minimum of words
beyond the core word set which should enable
maximum portability. Beyond the core, it relies
heavily on the optional String word set, which is
unavoidable.

A Forth-based FCode implementation does
bring a run-time performance penalty. Network-
enabled embedded applications will probably
not be effected since the benefits of cost-
effective connectivity will outweigh CPU
performance. Environments needing additional
performance may rely on the many Forth
compilers that generate native inline/non-
threaded code.

The implementation consists of two
components: a compiler and an interpreter.
FCode source code is Forth source code
compiled against the FCode dictionary. The
output of the compiler is a stream of 8-bit values
(byte-codes), each of which represent a single
Forth word. The interpreter reads the FCode
stream one byte at a time. Each byte is an index
into a branch table pointing to word
implementations. The word implementation is
found and executed in sequence.

Most of FCode is implemented by
constructing byte-code table entries that point
directly to the underlying Forth implementation.
A small number of words, such as literals,
branching, looping, and new word definitions,
must be re-implemented to support FCode.

4.4. Stand-alone operation via FLOSS

In some cases, particularly in deeply
embedded systems, it is desirable to have the
applications run without an underlying
operating system to further reduce the resource
requirements and complexity of the software.
Forth has traditionally been used to run on “bare
silicon” as a lightweight operating system.
Because FICL is written in ANSI C and makes
use of the C standard library, we have used the
University of Utah’s OSKit [18] to convert it
into a bootable, stand-alone operating system
kernel called FLOSS (Flit Operating System
Services). OSKit provides a means to quickly
link user-level C-source to kernel-level libraries
that mimic standard library functionality. It also
provides a wealth of Linux [19] and FreeBSD
[20] device drivers wrapped in a Component
Object Model (COM) glue code layer.

At present, FLOSS only offers the FICL
interpreter. The network functions and the
FCode interpreter are currently being integrated.
FLOSS will allow the execute of flits on low-
resource embedded PC platforms while
maintaining many of the advantages of
operation under a modern operating system.

4.5. High-level language support

Despite the advantages of using Forth-based
technologies, its peculiar syntax and semantics
will require a good deal of adjustment on the
part of programmers already using high-level
languages. Fortunately, we believe that
language translators and retargeted compilers
that generate Forth will allow programmers to
continue using their existing languages and
tools. For example, the Java Virtual Machine,
like Forth, uses a stack-based architecture. We
plan to explore the creation of a Java bytecode
to Forth translator that will allow the use of
existing Java tools to create flits. Java class file
disassemblers are widely available. We believe
that one can be used as the basis for a Java
translator. As a result, our Forth-based solution
can be viewed as an extension of existing
technologies to low-end processors, rather than
a competing technology.

4.6. Metrology and Diagnostics

A major goal of our research is to support the
development of pervasive computing metrology
and diagnostic techniques. Software
measurements are greatly facilitated if the
underlying execution environment can provide
adequate “hooks” for measurement tools. This is
one reason that we find the Java Virtual
Machine so appealing. The Java Virtual
Machine Debugger Interface (JVMDI) and the
Java Virtual Machine Profiler Interface
(JVMPI) offer a convenient set of measurement
points for metrology tools.

The current state of pervasive computing
complicates matters, since the mixture of
software architectures makes it difficult to
obtain a uniform measurement and diagnostic
interface. Our Forth-based solution offers hope
because of Forth’s portable, open and extensible
nature. We believe that it will allow us to easily
and efficiently instrument code by redefining
the necessary Forth words.

5. Summary

Forth makes a good foundation for pervasive
computing. It is a recognized standard that has
been successful in embedded applications by
providing small solutions to difficult problems.
The Forth runtime environment has a small
memory footprint and does not required large
support libraries for basic operation. It is also
portable across a wide range of hardware from
8-bit controllers to 64-bit processors.

Forth has already been extended to
applications that have similar requirements to
those of pervasive computing. One example is
the in the implementation of platform-neutral
firmware via Open Firmware specification.
Open Firmware achieves binary portability
through the use of FCode, a standardized
extensible Forth-based bytecode.

Our flits (“Forth applets”) will adapt FCode
for the network operation by providing an
applet-like environment and a container for
packaging multiple FCode/Forth components.

6. Conclusion

Current pervasive computing software
technologies have addressed 32-bit desktop
platforms. However, there are innumerable 8-,
16-, and 32-bit microcontroller and
microprocessor-based embedded systems that
do not support the resource requirements of
these technologies.

We have described ongoing research to
explore the feasibility of creating a portable
Forth/FCode-based runtime environment
capable of executing across a wide-variety of 8-,
16-, and 32-bit processors and offer mobile code
and high-level language support. Our runtime
environment will work under a variety of
operating systems and will also run on bare
hardware. It will also facilitate the creation of
pervasive computing measurement and
diagnostic tools.

We’ve introduced the notion of a flit, a unit
of mobile executable code that can be hosted in
processor and memory constrained systems.

The peculiarities of the Forth syntax can be
hidden from the programmer by re-targeting
high-level language compilers to generate Forth
output or by creating translators that convert
Java bytecode to Forth.

Note: The presence or absence of a particular
trade name product does not imply criticism or
endorsement by the National Institute of
Standards and Technology, nor does it imply
that the products identified are necessarily the
best available. Java and all Java-based
trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc.
in the United States and other countries.

7. References

[1] “The Aroma Project Web Site”, http://www.nist.gov/aroma,
National Institute of Standards and Technology, Gaithersburg,
Maryland, 2000.

[2] “Java Card™ 2.1 Virtual Machine Specification”, Final
Revision 1.1, Sun Microsystems Inc., Palo Alto, California, June
7th, 1999.

[3] “Jini™ Connection Technology”, http://www.sun.com/jini,
Sun Microsystems Inc., Palo Alto, California, 1999.

[4] “www.jini.org Home Page”, http://www.jini.org, The Jini
Community, Sun Microsystems Inc., Aspen, Colorado, 2000.

[5] Edwards, W.K., “Core Jini”, The Sun Microsystems Press
Java Series, Prentice Hall, Upper Saddle River, New Jersey,
1999.

[6] Naughton, P., “The Java Handbook”, Osborne McGraw-Hill,
Berkley, California, 1996.

[7] Guttman, E., “Service Location Protocol Home Page”,
http://www.srvloc.org/, IETF SVRLOC Working Group, The
Internet Engineering Taskforce, April 12th, 1998.

[8] “IETF Home Page”, http://www.ietf.org/, The Internet
Engineering Task Force, IETF Secretariat,
Corporation for National Research Initiatives, Reston, Virginia,
2000.

[9] “IEEE Std 1275-1994: IEEE Standard for Boot Firmware
(Initialization Configuration) Firmware: Core Requirements and
Practices”, Computer Society, Institute Electrical and
Electronics Engineers, New York, NY, 1994.

[10] “American National Standard for Information Systems:
Programming Languages: Forth”, ANSI/X3.215-1994,
American National Standards Institute, 1994.

[11] Carter, E.F., “Forth Interest Group Home Page”,
http://www.forth.org/, Carmel, California.

[12] Rash, J., “Space Related Applications of Forth”,
http://forth.gsfc.nasa.gov/, National Aeronautics and Space
Administration, Goddard Space Flight Center Greenbelt,
Maryland.

[13] Koopman, P.J., A Brief Introduction to Forth, Second
History of Programming Languages Conference (HOPL-II),
Boston MA. 1993, also
http://www.cs.cmu.edu/~koopman/forth/hopl.html.

[14] Stiegler, M.D. and Hansen, R.H., Programming Languages:
Featuring the IBM PC and Compatibles, Baen Books, New York
City, New York, 1984.

[15] Holst, W., “Intelligent Homes”,
http://web.cs.ualberta.ca/~wade/HyperHome/, Department of
Computing Science, University of Alberta, Edmonton, Canada,
August 20th, 1998.

[16] Oaks, S., “Java Security”, O’Reilly and Associates,
Sebastopol, California, 1998.

[17] Sadler, J., “FICL 2.03 Release Notes”,
http://www.taygeta.com/ficl.html, May 20,1999.

[18] Lepreau, J., “The OSKit - Home Page”,
http://www.cs.utah.edu/flux/oskit/, The Flux Research Group,
University of Utah, Salt Lake City, Utah, December 11th, 1999.

[19] “The Linux Home Page at Linux Online”,
http://www.linux.org, Linux Online Inc, Laurel, Maryland,
January 28th , 2000.

[20] “The FreeBSD Project”, http://www.freebsd.org, The
FreeBSD Project, Gresham, Oregon, 2000.

http://www.nist.gov/aroma
http://www.sun.com/jini
http://www.jini.org/
http://www.srvloc.org/
http://www.ietf.org/
http://www.forth.org/
http://forth.gsfc.nasa.gov/
http://www.cs.cmu.edu/~koopman/forth/hopl.html
http://web.cs.ualberta.ca/~wade/HyperHome/
http://www.taygeta.com/ficl.html
http://www.cs.utah.edu/flux/oskit/
http://www.linux.org/
http://www.freebsd.org/

	. Introduction
	. Background
	. Forth
	. Open Firmware
	. FCode

	. Flits
	. Experimental Prototype
	. Forth System
	. Integrated Network Support
	. FCode Implementation
	. Stand-alone operation via FLOSS
	. High-level language support
	. Metrology and Diagnostics

	. Summary
	. Conclusion
	. References

